
 1

CS486C – Senior Capstone Design in
Computer Science

Project Description

Project Title: CrossDoc

Sponsor Information:

James Palmer, Associate Professor
John Georgas, Associate Professor
Nakai McAddis, Lecturer

NAU / SICCS Contact:
James.Palmer@nau.edu

Project Overview:

Computer code comments are an important source of information for developers. Comments may describe
API interfaces, how programs work, features that need to be implemented, and in multicultural teams
comments may be needed in multiple languages. In some companies the professional writers write API
documentation. Current tools and practice do not strongly support comments created by non-developers,
multi-lingual comments, or comments aligned to different software concerns.

In previous work, Palmer and McAddis developed a system called CrossDoc to support source comments in
a more flexible way than traditional embedded comments. Using the system, source code is annotated with
stable comment anchors to which comments are later attached. These comments are stored externally to the
code in locations called comment stores which can be files on the system or other applications like wikis.
Comments are then dynamically fetched from the comment stores and injected into the source beneath their
associated anchors when accessed through a text editor which is CrossDoc savvy1.

Comments may also be edited directly through a comment store if that comment store provides an interface
for this. For instance, a wiki which functions as a comment store would allow comments to be edited through
the usual mechanism for editing wiki pages. Of course, simple text files functioning as comment stores may
be edited directly.

McAddis developed a prototype of the CrossDoc system which uses the Atom text editor and a wiki for the
comment store. In this project, you will develop a second generation CrossDoc tool based on what we
learned from the prototype. While you may use parts of the existing code base, that is not a requirement.
Specific features you should implement include:

● Beginning and end tags that denote comment scope – the current system is unscoped
● Tools should provide a command line interface for inserting, changing, and removing CrossDoc

comments – the current system must be used from Atom
● Integration support for three of Emacs, Vim, Atom, or Sublime – the current system’s support for

Atom should be reimplemented
● Integration support for git using git hooks to ensure that only comment anchors/tags are committed

(and not the comments)
● Integration support for JavaDoc and Doxygen

1 A screenshot of the prototype system on the last page demonstrates some of these capabilities

 2

● Support for hierarchical comment stores and/or comment mixins – the current system supports only
selecting a single comment store at a time.

● Both application based comment stores and file based comment stores – the current system
supports only a wiki based store

● Excellent documentation, test suites, examples, and error checking
● Excellent packaging making the end package easy to install (e.g., brew, pip)
● Formative testing with, at least, CS seniors or maybe even experienced developers from ITS or

USGS
● Stretch goal: mechanism to flag documentation as being potentially out of date when code changes

or if API doesn’t match documentation (using JavaDoc or Doxygen).

Knowledge, skills, and expertise required for this project:

● Experience with git
● Experience with C, Python, and/or JavaScript
● Comfortable using the command line (on Windows, OS X, or Linux)
● Some team members with Emacs, Vim, Sublime, and/or Atom experience is a plus

Equipment Requirements:

There should be no equipment or software required other than a development platform and software/tools
freely available online.

Software and other Deliverables:

● Crossdoc command line tool with excellent packaging
● Excellent documentation (including github style MD, man pages, and PDF)
● A strong as-built report detailing the design and implementation of the product in a complete, clear

and professional manner. This document should provide a strong basis for future development of
the product.

● Complete professionally-documented codebase, delivered both as a repository in GitHub, BitBucket,
or some other version control repository; and as a physical archive on a USB drive.

	

Example Screenshot:	

This image shows a sample Java file with a single comment anchor (the line comment beginning with <&>).
This anchor has two comments attached to it, an ‘overview’ comment shown in the left frame and a ‘todo’
comment in the right. A user can switch which comment is shown for an anchor with a keyboard shortcut.	

